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Abstract

A new harmonic balance method (HBM) is presented for accurately computing the periodic responses of a nonlinear

sdof oscillator with multi-harmonic forcing and non-expansible nonlinearities. The presence of multi-harmonic forcing

requires a large number of solution harmonics with a substantial increase in computational demand for either the

conventional or the incremental HBM. In this method, the oscillator equation-error is first defined in terms of two

functions (originally proposed for obtaining free-vibration periods in: R.E. Mickens, Iteration procedure for determining

approximate solutions to nonlinear oscillator equations, Journal of Sound and Vibration 116 (1987) 185–187; and more

recently: R.E. Mickens, A Generalised iteration procedure for calculating approximations to periodic solutions of ‘‘truly

nonlinear oscillations’’, Journal of Sound and Vibration 287 (2005) 1045–1051). A Fourier series solution is assumed, in

which the total number of harmonics is fixed by the chosen discrete-time interval—this series is split into two partial sums

nominally associated with either low-frequency or high-frequency harmonics. By exploiting a convergence property of the

equation-error functions, the total solution is obtained in a new iterative scheme in which the low-frequency components

are computed via a conventional HBM using a small number of algebraic equations, whereas the high frequency

components are obtained in a separate step by updating. By gradually increasing the number of harmonics in the low-

frequency group, the equation-error can be progressively reduced. Efficient use is made of FFT-based algebraic equation

generation which allows an important class of non-expansible nonlinearities to be handled. The proposed method is tested

on a Duffing-type oscillator, and an oscillator with a non-expansible 7th power stiffness term, where in both cases up to 24

component multi-harmonic forcing is applied. As a comparison, a conventional HBM is also used on the Duffing model in

which the algebraic equations are generated in symbolic form to totally avoid errors from entering the formulation through

complicated expansion of the cubic stiffness term (as in: I. Senjanović, Harmonic analysis of nonlinear oscillations of

cubic dynamical systems, Journal of Ship Research 38 (3) (1994) 225–238; and in: A. Raghothama, S. Narayanan, Periodic

response and chaos in nonlinear systems with parametric excitation and time delay, Nonlinear dynamics 27 (2002)

341–365). The paper shows that in obtaining period-1 solutions, the computational accuracy and efficiency of the proposed

method is very good.
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1. Introduction

Nonlinear oscillator models arise in many areas of physics and engineering and are important in mechanical
dynamics for accurate prediction of forced motion. An important class of externally excited sdof oscillators
are those with non-expansible nonlinearities and periodic multi-harmonic forcing, rather than just single-
harmonic excitation. Non-expansible nonlinearities are understood to mean those functions which cannot in
practice be expanded into explicit Fourier series when the argument of the function is also expressed as a
Fourier series. Quadratic and cubic terms are examples of expansible functions but 5th and higher powers are
not. Many investigations have focused on single-harmonic forcing of the Duffing oscillator, to predict motion
at the driving frequency, as well as sub- and super-harmonic resonances. Other studies have gone further,
using stability analysis to find bifurcations, period-doubling, jumping phenomena, and transition conditions
from periodic to chaotic behaviour. Since this multi-valued behaviour is highly sensitive to initial conditions,
time-domain integration techniques are of limited value, except for generating stable solutions using known
steady-state initial conditions. Alternative approximate approaches, such as the perturbation method [1],
multiple scales [2], and the harmonic balance method (HBM) [3–21] have been developed to study forced
periodic motion. Of these, the HBM is by far the most widely used because it can handle strongly nonlinear
behaviour; it can be extended to MDOF systems; and because the approximation error can in principle, be
reduced to any level.

This paper focuses on a new form of HBM to address multi-harmonic forcing and non-expansible
nonlinearities. The HBM has already received considerable attention over the past two decades to address a
number of general questions [3–12], and specific applications include studies on flow-induced vibration [13],
ship rolling motion [14–16], rotor dynamics [17–19], thermally coupled beam vibrations [20], and gear-train
dynamics [21]. The HBM has also been used in electro-dynamic applications to study communication circuits
[22], and magnetic-field saturation [23]. Multi-harmonic forcing arises for example, in rolling contact pulse-
loading on machines, through gas pressure variation in IC engines and gas-turbine blade movement past fixed
nozzles (where in linear models, superposition allows individual harmonics to be treated separately as ‘engine
order’ excitation). Other sources include out-of-balance forces in mechanisms and multi-shaft rotors (with
rational speed ratios), torque transmission through couplings, and from wave loading on offshore and ship
structures in regular wave-tank tests. A number of studies have considered multi-harmonic forcing with
quadratic and cubic stiffness. For example in Ref. [20], two forcing harmonics were used, and up to 32
harmonics in the response; and in Ref. [14], a total of 20 excitation harmonics were used, and up to 134
harmonics in the response; elsewhere in Ref. [22], three input harmonics justified 30 response harmonics; and
in Ref. [23], a square wave input was modelled with 15 harmonics, with the same number in the response. The
inclusion of more harmonics in the forcing function makes no difference to the HBM formulation since this
depends on whether the nonlinearity is expansible. But the need to substantially increase the number of
solution harmonics compounds the HBM formulation and the computational effort, especially for non-
expansible nonlinearities [16].

To appreciate these combined factors, consider the three main tasks involved in generating a periodic
solution using the HBM. First an approximate solution is assumed in the form of a truncated Fourier
series with undetermined coefficients. Next, the assumed solution is manipulated in the model, using
appropriate identities to generate a vector of algebraic equations for the coefficients. Finally the
algebraic equations are solved, either in direct form, as a minimisation problem, or as a series of linear
iterations using the incremental harmonic balance method (IHBM) [4–6]. An accurate HBM solution
can then be used in a continuation scheme to obtain a neighbourhood solution for a small parameter
change using either the IHBM [20] or Arc Length Continuation [17]. Regarding the number of solution
harmonics needed, with single harmonic forcing, prior knowledge of an application can allow a substantial
reduction. On a rotor problem for example [17], four response harmonics were found to give a similar
qualitative solution as using 32 harmonics. But similar economy is not generally possible with multi-harmonic
forcing. And with regard to the feasibility of constructing the algebraic equations, an explicit system can only
be generated for quadratic and cubic terms [12]. For higher powers and more general types of nonlinearity,
conventional algebraic manipulation is simply not feasible although attempts can be made using symbolic
computation.
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When explicit algebraic equations cannot be generated via conventional or symbolic manipulation, a
different approach is needed. Use of the FFT offers an alternative approach by enabling implicit generation of
the algebraic equations in temporary numerical form (i.e. made available when needed). This allows much
more complex types of nonlinearity to be handled. The problem then however, switches to the computational
cost and accuracy of solving the system of algebraic equations expressed in numerical form. For multi-
harmonic forcing, where a potentially huge number of response harmonics are needed, the computational cost
of FFT generation is unacceptable. A method is therefore needed that can accurately and efficiently handle
non-expansible nonlinearities with large numbers of solution harmonics.

In this paper, a new HBM method is presented which utilises FFT-based algebraic equation generation
allowing non-expansible nonlinearities to be handled. First the oscillator equation-error is defined in terms of
two functions [24–26]. Then the assumed Fourier series solution is split (in a novel way) into two partial sums,
nominally associated with either low-frequency or high-frequency harmonics. By exploiting a convergence
property of the equation-error functions, the total solution is obtained in a new iterative scheme, in which the
low-frequency components are obtained via a conventional HBM involving only a small number of algebraic
equations, whereas the high frequency components are obtained in a separate step by updating. The objective
of the paper is to establish the accuracy and efficiency of the method in computing period-1 responses for
oscillators with varying degrees of multi-harmonic forcing and with non-expansible nonlinearity. For
application to the Duffing oscillator with multi-harmonic excitation, the proposed method is compared with a
fully conventional HBM in which the algebraic equations are generated using symbolic computation. This is
done to totally avoid errors from entering the algebraic equation formulation, and thus to establish objective
limitations in the use of a symbolic computing technique with a fully conventional HBM.

2. An iterative split-frequency harmonic balance method

The basis of this new split frequency harmonic balance method (SF-HBM) is now fully developed for a class
of sdof oscillators with arbitrary periodic forcing expressed as a finite Fourier series. The overall approach first
involves re-defining the oscillator model in terms of two functions (originally proposed by Mickens [24,26] for
iterative approximation of the free-vibration period of an oscillator). The response harmonics are then
assumed in the form of a Fourier series which is split into two groups: one group nominally associated with
‘low’ frequency harmonics, the other group nominally associated with ‘high’ frequency harmonics. This
splitting of the harmonics leads to an iterative scheme (different from that proposed by Mickens [26]) in which
an HBM is used to find the coefficients associated with the low frequency response harmonics. The high-
frequency harmonics are updated using the low-frequency harmonics, which are in turn, revised iteratively.
Certain nonlinear operations are expediently performed using a discrete-time formulation, in which an FFT is
efficiently used. In particular, an FFT is used to do the following related things: (i) to obtain individual
derivatives in the model; (ii) to form the equation error; (iii) to construct the HBM equations; and finally
(iv) to generate a set of coefficients needed to update the high-frequency harmonics. The HBM equations,
which remain small in number, can then be solved using a conventional least square error solver. By starting-
off with just one low-frequency harmonic, and gradually adding more terms, this formulation allows the
equation error to be iteratively reduced. But the total number of harmonics in the solution remains fixed, as
decided by the discrete time interval. This splitting of response harmonics into these two groups, and the use of
the FFT to form the low frequency HBM equations, makes it possible for the method to efficiently handle
multi-harmonic forcing and non-expansible nonlinearities.

Now the class of sdof oscillator models is assumed in the form:

€yþ F ðy; _yÞ ¼ f ðtÞ (1)

with excitation f(t) is assumed to be periodic and represented in the form of Fourier series:

f ðtÞ ¼
Xm

k¼�m

Cke
jOkt, (2)

where Ok ¼ kO1. The function F ðy; _yÞ in Eq. (1) need not be a polynomial function of its arguments, however
the existence of a periodic solution must be assumed from the outset (as for the success of the HBM in
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general). If the function F ðy; _yÞ is of acceptable form to obtain a periodic solution y(t) (with fundamental
frequency O1), then two additional conditions must be imposed on F ðy; _yÞ: (i) F ðy; _yÞ must have a Fourier
series representation with fundamental frequency O1; and (ii) F ðy; _yÞ should not contain jump discontinuities,
since an unacceptable discrete-time interval might otherwise be needed to meet the Nyquist criterion. This
excludes for example, ideal nonlinearities that can arise in impact problems. Also, the assumed solution is
limited to the same discrete frequencies as defined in the periodic excitation. The solution method proposed
here does not exclude the possibility that the fundamental excitation frequency might be chosen as nO1, i.e.
some integer multiple of the fundamental solution frequency O1. This can be arranged by setting to zero, the
first n�1 Fourier coefficients in the excitation i.e. C0 ¼ C1 ¼; . . . ;Cn�1 ¼ 0. Attention here however is focused
on computing period-1 solutions (at the fundamental excitation frequency O1) in response to multi-harmonic
excitation with fundamental frequency O1. It will therefore be assumed that the excitation coefficient C1 is
nonzero, and that the choice of the other excitation coefficients guarantees a periodic solution exists with
fundamental excitation frequency O1.

Suppose a trial solution yt of Eq. (1) is considered, the equation error associated with Eq. (1) is then:

eðtÞ ¼ €yt þ F ðyt; _ytÞ � f ðtÞ. (3)

Now by defining two (Mickens) functions [24,26] as follows:

s1ðytÞ ¼ ð €yt þ O2
1ytÞ (4)

and

s2ðytÞ ¼ O2
1yt � F ðyt; _ytÞ þ f ðtÞ (5)

and assuming y(t) is a periodic solution of Eq. (1), then the function s2(y) has the effect of filtering-out the
fundamental component in y(t). The equation error (3) can be written in terms of these (Mickens) functions as
follows:

eðtÞ ¼ ð €yt þ O2
1ytÞ � ðO

2
1yt � F ðyt; _ytÞ þ f ðtÞÞ (6)

or

eðytðtÞÞ ¼ s1ðytÞ � s2ðytÞ. (7)

Now if yt ! yðtÞ, namely the trial solution converges in some sense to the true solution of Eq. (1), then from
Eq. (7) the following condition must also hold:

lim
yt!y

s1ðytÞ ¼ s2ðytÞ. (8)

For any periodic solution, the function s1ðytÞ, as defined by Eq. (4), has zero fundamental component.
Therefore for any exact solution of Eq. (1), the function s2ðyÞ will also have zero fundamental component. For
arbitrary trial function values, the auxiliary functions s1ðytÞ and s2ðytÞ are in general very different—a property
that will be exploited to good effect in a new iterative scheme explained shortly. Writing an assumed periodic
solution of Eq. (1) as

yt ¼ yLF ðtÞ þ yHF ðtÞ (9)

namely in two separate parts: the first part made up of ‘low frequency’ (LF) components:

yLF ðtÞ ¼
A0

2
þ
Xk

m¼1

Am cosðOmtþ FmÞ (10)

and the second part containing ‘high frequency’ (HF) components:

yHF ðtÞ ¼
X1

m¼kþ1

Am cosðOmtþ FmÞ, (11)

where yHF ðtÞ usually has diminishingly small amplitudes. The ‘‘low’’ frequency components are defined as the
part of the truncated Fourier series containing the k lowest frequency harmonics, whereas the ‘‘high’’
frequency components are the remaining components. In the proposed iterative scheme, the total number of
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terms in the truncated version of Eq. (11) remains fixed. But the size of the two sets will vary since some of the
components start-off in the ‘‘high’’ frequency group, but later become members of the ‘‘low’’ frequency group.
The ‘‘low’’ frequency group will always start with just the mean (zero frequency), and the fundamental
component. It will shortly be seen that the amplitudes and phases for the ‘‘low’’ frequency group are obtained
by solving a system of FFT-generated algebraic equations, whereas the ‘‘high’’ frequency components are
updated by iteration. The starting version of yLF ðtÞ is a constant (not necessarily zero) plus a single harmonic
function (representing the first harmonic in a Fourier series) i.e.

yLF ðtÞ ¼
A0

2
þ A1 cosðO1tþ F1Þ. (12)

Use of Eq. (9) in Eqs. (4) and (5) allows a re-arranged version of Eq. (7) to be written as

€yLF þ €yHF þ O2
1ðyLF þ yHF Þ ¼ O2

1ðyLF þ yHF Þ

� F ðyLF þ yHF ; _yLF þ _yHF Þ þ f ðtÞ þ eðyLF þ yHF Þ. ð13Þ

On account of the version of yLF ðtÞ in Eq. (12) having only a single harmonic at frequency O1, Eq. (13)
reduces to

€yHF þ O2
1yHF ¼ �

A0O2
1

2
þ O2

1ðyLF þ yHF Þ � F ðyLF þ yHF ; _yLF þ _yHF Þ þ f ðtÞ þ eðyLF þ yHF Þ. (14)

Now since both sides of Eq. (14) contain all harmonics except the fundamental, the right-hand-side
of Eq. (14) can be represented by a Fourier series with all but fundamental frequency components, namely:

�
A0O2

1

2
þ O2

1ðyLF þ yHF Þ � F ðyLF þ yHF ; _yLF þ _yHF Þ

þ f ðtÞ þ eðyLF þ yHF Þ ¼
a0

2
þ
X1
n¼2

an cosðOntÞ þ bn sinðOntÞ. ð15Þ

The forced (particular integral) solution of Eq. (14) can therefore be obtained explicitly as

yHFu ¼
a0

2O2
1

�
1

O2
1

X1
n¼2

1

ðn2 � 1Þ
an cosðOntÞ þ bn sinðOntÞ, (16)

where suffix u in yHFu refers to an ‘update’. The total solution of Eq. (14) (complementary function plus
particular integral) is then

yHFu ¼ a cosðO1tÞ þ b sinðO1tÞ

þ
1

O2
1

a0

2
�
X1
n¼2

1

ðn2 � 1Þ
fan cosðOntÞ þ bn sinðOntÞg

( )
, ð17Þ

where a and b are (unknown) constants of integration. The total updated form of Eq. (9) using Eq. (12), i.e. a
single harmonic version of yLF ðtÞ, can further be written as

ytðtÞ ¼
A0

2
þ A1 cosðO1tþ F1Þ þ a cosðO1tÞ þ b sinðO1tÞ

þ
1

O2
1

a0

2
�
X1
n¼2

1

ðn2 � 1Þ
fan cosðOntÞ þ bn sinðOntÞg

( )
ð18Þ

and without loss of generality, the constant terms and the complementary function (with unknown constants
of integration a and b) in Eq. (18) can be combined to give

ytðtÞ ¼
A00
2
þ A01 cosðO1tþ F01Þ �

1

O2
1

X1
n¼2

1

ðn2 � 1Þ
an cosðOntÞ þ bn sinðOntÞ
� �( )

. (19)

Now if the coefficients A0, A1, and F1, in Eq. (12), and the function yHF ðtÞ in Eq. (9) were chosen so that yt

were an exact solution, then eðytðtÞÞ ¼ 0 in Eq. (7), and the limit in Eq. (8) would be reached. Eq. (19) would
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then correspond precisely to the same exact solution (where the undetermined coefficients must satisfy the
condition A00 ¼ A0, A01 ¼ A1, and F01 ¼ F1). When the form of Eq. (9) is only an approximate solution of
Eq. (1) but the correct nonzero equation-error term eðytðtÞÞ is used in Eq. (15), then again the update yHFu

obtained from Eq. (16), would correspond to the original used. But when an approximate solution is used in
Eq. (9), in which the equation-error term in Eq. (15) is set to zero, namely eðytðtÞÞ ¼ 0, then yHFu obtained from
Eq. (16) would in general be different from the original chosen since the limit in Eq. (8) would then be forced
to hold. This updated version yHFu would hopefully represent an improvement on the original. In fact repeated
updating can start by first using a temporarily fixed (approximate) form of yHFu and using for example, the
HBM to find coefficients A0, A1, and F1 in yLF ðtÞ ¼ ðA0=2Þ þ A1 cosðO1tþ F1Þ as part of the complete trial
solution yt ¼ yLF ðtÞ þ yHF ðtÞ in Eq. (1). Subsequent use of the updated higher frequency part yHFu in Eq. (19),
does however require coefficients A00;A

0
1; and F01 to be updated (involving repeated application of the HBM).

Continued use of this iterative process could give a better approximation after each iteration. But since Eq. (8)
does not hold, except under exact conditions, there is no guarantee that the error would continue to reduce
with each iteration. Continued reduction of the error is however made possible with the addition of more
terms in Eq. (10). Generalising yLF ðtÞ in Eq. (10) to include more terms in the low-frequency part of the
solution namely

yLF ðtÞ ¼
A0

2
þ A1 cosðO1tþ F1Þ þ A2 cosðO2tþ F2Þ þ � � � þ Ak cosðOktþ FkÞ (20)

and initially assuming an approximate high frequency part yHF ðtÞ in Eq. (9), leads to a more general form of
Eq. (16). Namely by using an appropriate Fourier expansion of Eq. (15) and solving Eq. (13) for the non-
constant part of the particular integral to give

yHFu ¼ �
1

O2
1

X1
n¼2

1

ðn2 � 1Þ
fan cosðOntÞ þ bn sinðOntÞg

( )
�

Xk

K¼2

AK cosðOK tþ FK Þ

( )
. (21)

But on account of the lower summation in Eq. (11) defining yHF , low frequency terms up to the kth
harmonic arising in both parts of Eq. (21) must cancel, reducing yHFu to

yHFu ¼ �
1

O2
1

X1
n¼kþ1

1

ðn2 � 1Þ
fan cosðOntÞ þ bn sinðOntÞg

( )
. (22)

The full form of the forced solution also involves the addition to Eq. (22) of the mean term a0=2O2
1 which

can be combined with the mean term in Eq. (20) to give the corresponding version of Eq. (19) as

ytðtÞ ¼
A00
2
þ A01 cosðO1tþ F01Þ þ A2 cosðO2tþ F2Þ þ � � � þ Ak cosðOktþ FkÞ þ yHFu. (23)

Now if the starting approximation yHF is kept fixed, coefficients A0, A1,y,Ak, and F1,F2,y,Fk

in Eq. (20) are first determined using the HBM to find the best trial solution yt ¼ yLF ðtÞ þ yHF ðtÞ. Eq. (22) is
then used to update the high frequency part yHFuðtÞ, which is then used in the next iteration to
obtain coefficients A00;A

0
1;A2; . . . ;Ak,y and F01;F2; . . . ;Fk in Eq. (23) again using the HBM. This

iteration process can be repeated to obtain a better approximation after each iteration. But again,
although there is no guarantee that the equation error will continue to reduce, as more terms are
used in Eq. (20), a corresponding reduction in the minimum error will result. This is the basis of the
iterative scheme.

2.1. The computational details of the iterative scheme

Eq. (14), with Fourier series solution (16), forms the basis of the iteration scheme by starting-off assuming a
single harmonic function represents a good approximation to the true solution. This in general makes use of
the FFT to do three things: (i) to obtain exact time derivatives (in the frequency domain) for terms in both the
equation error (3) and the right-hand-side of Eq. (14); (ii) to construct either algebraic equations or an
objective function (for minimisation) using appropriate harmonic components of the equation error, (initially
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involving just the mean and fundamental but later extended to k harmonic components); and (iii) to generate
the Fourier coefficients of s2ðyÞ as defined by Eq. (5) in particular the left-hand-side of Eq. (15) which
(excluding the mean value and the error term) is needed for Fourier series solution (16) and later (22). The
algorithm proceeds as follows:

Step 1: Start iteration at i ¼ 0. Set yHFiðtÞ ¼ 0, i.e. assume yi ¼ yLF ¼ ðA0i=2Þ þ A1i cosðO1tþ F1iÞ:
Step 2: Solve for A0i, A1i, and F1i via a one-term HBM solution of Eq. (1). In general this step is efficiently

achieved using an FFT of the equation error eðtmÞ at N discrete time intervals of duration T/N over period T,
in the form:

EðKÞ ¼
XN

m¼1

eðtmÞe
�j2pKðm�1Þ=N ; 0pKpN � 1. (24)

The mean, and the real and imaginary parts of the complex fundamental component of E(K) are then set to
zero namely:

fEð0Þg ¼
XN

m¼1

eðtmÞ ¼ g0ðA0i;A1i;F1iÞ ¼ 0, (25)

refEð1Þg ¼ re
XN

m¼1

eðtmÞe
�j2pðm�1Þ=N

( )
¼ g1rðA0i;A1i;F1iÞ ¼ 0, (26)

imfEð1Þg ¼ im
XN

m¼1

eðtmÞe
�j2pðm�1Þ=N

( )
¼ g1imðA0i;A1i;F1iÞ ¼ 0, (27)

leading to three algebraic equations for A0i, A1i, and F0i. Alternatively, the sum of the squared absolute
magnitudes of the equation error mean and fundamental component should have a well-behaved minimum at
zero, allowing A0i, A1i, and F0i to be obtained from an unconstrained least-square sum of objective function
g1ðA0i;A1i;F1iÞ defined as

jEð0Þj2 þ jEð1Þj2 ¼
X1
K¼0

XN

m¼1

eðtmÞe
�j2pKðm�1Þ=N

�����
�����
2

¼ g1ðA0i;A1i;F1iÞ. (28)

Step 3: Obtain the Fourier components of Eq. (15) (omitting the equation error term). Then with
coefficients an and bn, obtain a first update estimate of yHFiðtÞ, namely:

yHFi ¼ �
1

O2
1

XN=2
n¼2

1

ðn2 � 1Þ
an cosðOntÞ þ bn sinðOntÞ

( )
, (29)

where suffix u has for convenience been omitted.
Step 4: Now generate an improved solution yiþ1 ¼ ðA0iþ1=2Þ þ A1iþ1 cosðO1tþ F1iþ1Þ þ yHFiðtÞ, by solving

for a new mean A0iþ1, and fundamental harmonic amplitude A1iþ1 and phase F1iþ1 using the HBM, and then
by incrementing i and repeating steps 2–4, continue iterating a fixed number of times or until the rms value of
the equation error (3) reaches a minimum.

Step 5: Next, use the final rms error values A0i, A1i, and F1i, and the 2nd harmonic amplitude and phase
associated with yHFi, as the starting values for A0i;A1i;F1i;A2i; and F2i in a two-harmonic version of yLF ðtÞ

defined by Eq. (20) where the high frequency term yHF ðtÞ is obtained from yHFi by removing the lowest
frequency component (i.e. the 2nd harmonic), namely:

ytðtÞ ¼
A0i

2
þ A1i cosðO1tþ F1iÞ þ A2i cosðO2tþ F2iÞ þ yHF ðtÞ. (30)

In practice, a new HBM equation (to be minimised) can be constructed by keeping the yHF part fixed,
and by constructing the FFT of the equation error and then forming the sum of the first three squared
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equation-error harmonics, namely:

jEð0Þj2 þ jEð1Þj2 þ jEð2Þj2 ¼
X2
K¼0

XN

m¼1

eðtmÞe
�j2pKðm�1Þ=N

�����
�����
2

¼ g2ðA0i;A1i;F1i;A2i;F2iÞ. (31)

Now with new yLFi and yHFi, obtain Fourier components for Eq. (15) (but again excluding the error term).
The part of the solution to Eq. (14) to enable the high frequency update is then:

yHFi ¼ �
1

O2
1

XN=2
n¼3

1

ðn2 � 1Þ
fan cosðOntÞ þ bn sinðOntÞg

( )
. (32)

Eq. (32) is then used in Eq. (30) to improve the harmonic balance solution. This is repeated, incrementing i a
number of times or until the rms equation error reaches a new minimum.

Step 6: The lowest harmonic amplitude and phase in the final value of yHFi are now used to augment the
starting values in new additional terms for yLF ðtÞ in Eq. (20), and where the remaining harmonics yHFi are used
as the new starting version of yHF ðtÞ. This will continue with an additional 3rd term, then a 4th term, and so
on, adding more terms, in general giving rise to an approximate solution of the form:

ytðtÞ ¼
A0

2
þ A1 cosðO1tþ F1Þ þ A2 cosðO2tþ F2Þ þ � � � þ Ak cosðOktþ FkÞ þ yHFiðtÞ. (33)

Again the coefficients can be solved via the HBM as a least-square-error solution of

Xk

K¼0

jEðKÞj2 ¼
Xk

K¼0

XN

m¼1

eðtmÞe
�j2pKðm�1Þ=N

�����
�����
2

¼ gkðA0;A1;F1;A2;F2; . . . ;Ak;FkÞ. (34)

Step 7: The update in yHFi generalises to

yHFi ¼ �
1

O2
1

XN=2
n¼kþ1

1

ðn2 � 1Þ
fan cosðOntÞ þ bn sinðOntÞg

( )
. (35)

This improvement process is continued until a value of k is reached using a particular version of Eq. (33),
where the final rms equation-error is acceptably small.

2.2. The SF-HBM equations for the Duffing oscillator

As an example, the forms that Eqs. (1)–(15) take are of interest for the Duffing model:

€yþ 2zon _yþ o2
nyþ ey3 ¼ f ðtÞ. (36)

The Duffing model belongs to the class of oscillators defined by Eq. (1) (with the exception that the
excitation f ðtÞ is assumed to be multi-harmonic in the form given by Eq. (2) rather than just a single
harmonic). When a trial solution yt is assumed, the equation error associated with Eq. (36) is then:

eðtÞ ¼ €yt þ 2zon _yt þ o2
nyt þ ey3

t � f ðtÞ. (37)

The definition of the s1ðyÞ function Eq. (4) remains unchanged, but s2ðyÞ specialises to

s2ðytÞ ¼ ð�2zon _yt � ðo
2
n � O2

1Þyt � ey3
t þ f ðtÞÞ. (38)

Assuming yðtÞ is a periodic solution of Eq. (36), s2ðyÞ has the effect of filtering-out the fundamental
component in yðtÞ. The equation error (37) can also be written in the form:

eðtÞ ¼ ð €yt þ O2
1ytÞ � ð�2zon _yt � ðo

2
n � O2

1Þyt � ey3
t þ f ðtÞÞ, (39)

which on assuming a split solution of the form Eq. (9), allows Eq. (13) to be written:

€yLF þ €yHF þ O2
1ðyLF þ yHF Þ ¼ ð�2zonð _yLF þ _yHF Þ � ðo

2
n � O2

1ÞðyLF þ yHF Þ

� eðyLF þ yHF Þ
3
þ f ðtÞÞ þ eðyLF þ yHF Þ, ð40Þ



ARTICLE IN PRESS
J.F. Dunne, P. Hayward / Journal of Sound and Vibration 295 (2006) 939–963 947
and for a single term low-frequency approximation Eq. (12) reduces to

€yHF þ O2
1yHF ¼ �

A0O2
1

2
þ ð�2zonð _yLF þ _yHF Þ � ðo

2
n � O2

1ÞðyLF þ yHF Þ

� eðyLF þ yHF Þ
3
þ f ðtÞÞ þ eðyLF þ yHF Þ ð41Þ

and the form of Eq. (15) specialises to

�
A0O2

1

2
þ ð�2zonð _yLF þ _yHF Þ � ðo

2
n � O2

1ÞðyLF þ yHF Þ � eðyLF þ yHF Þ
3
þ f ðtÞÞ þ eðyLF þ yHF Þ

¼
a0

2
þ
X1
2

an cosðOntÞ þ bn sinðOntÞ, ð42Þ

where the Fourier components are needed for updating the high frequency part. The procedure then follows
steps 1–7 as outlined in Section 2. To obtain the forced response at the driving frequency, the initial choice of
starting frequency O1, and the coefficients A0, A1, and F1 in Eq. (12), play a significant role here but the
convergence to a particular solution is not sensitively dependent. For a particular driving frequency these
parameters can easily be selected to respectively give the high and low amplitude stable solutions. And a shift
in phase of �901 from the high amplitude stable solution, gives for the Duffing oscillator, an unstable high
amplitude solution. Although not the focus of this paper, it is not difficult to see how the choice of starting
frequency O1 can be used to target sub- and superharmonic resonances. The method will now be applied to
particular cases of periodic responses at the driving frequency with multi-harmonic forcing.

3. Computation of period-1 oscillator responses using the SF-HBM

The SF-HBM proposed in Section 2 is now tested, first on a Duffing-type oscillator, and then for an
oscillator with non-expansible nonlinear stiffness in the form of a 7th degree polynomial. The focus of
attention here is on periodic solutions with the same period as the driving frequency. To assess the accuracy,
capability, and efficiency of the method a comparison for the Duffing model is made with a conventional
HBM. The conventional HBM makes heavy use of symbolic computation for generation of an appropriate
system of nonlinear algebraic equations. First, details of this conventional method are given, followed by
details of the test parameters, and then a comparison of the conventional method with the SF-HBM.

3.1. A conventional HBM—Algebraic equation generation via symbolic computation

Applications of the HBM, such as used in Refs. [4–12], generally follow a rather similar approach. There are
some variants of the method, for example using prior knowledge to select a particular set of solution
harmonics (as in Ref. [17] for reasons of efficiency), or for treatment of particular nonlinearities as in Ref. [14].
Here a ‘conventional’ HBM approach is described which is not generally restricted to use of these variants.
This description includes the initial assumptions, preparation for use of symbolic computation, construction
of the system of nonlinear algebraic equations for the Duffing oscillator, and then finally how these equations
are solved. This conventional approach is used to benchmark the SF-HBM of Section 2 for generating
periodic solutions at same fundamental period as the excitation. For application to the oscillator model (36), a
zero-mean periodic excitation form of Eq. (2) is written explicitly in the form:

f ðtÞ ¼
Xm

k¼1

ak cosðkO1tÞ þ bk sinðkO1tÞ. (43)

The conventional HBM assumes a periodic system response directly in the form of a truncated Fourier
series:

yðtÞ ¼ A0c þ
Xr

nc¼1

Anc
cosðncOstÞ þ Bnc

sinðncOstÞ, (44)
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where suffix c in nc refers to ‘conventional’ HBM. To obtain periodic responses at the driving frequency, the
fundamental response frequency Os ¼ O1. The number of response frequencies r can be different from the
number of excitation frequencies m. On substitution of Eq. (44) and its derivatives into the model (36),
followed by algebraic manipulation and use of well-known trigonometric identities, an attempt can be made to
equate (i.e. balance) particular harmonic terms on the left-hand side of the model to harmonic coefficients in
the excitation—this creates a system of algebraic equations for the unknown coefficients in Eq. (44). The initial
step requires a first-stage expansion of the cubic nonlinearity in Eq. (36) which in principle can be achieved via
conventional manipulation (similar to Ref. [27]) in the form:

Xr

nc¼1

ðo2
n � ðncO1Þ

2
þ 3eA2

0cÞ½Anc
cosðncO1tÞ þ Bnc

sinðncO1tÞ�

þ
Xr

nc¼1

2ncxonO1½�Anc
sinðncO1tÞ þ Bnc

cosðncO1tÞ�

þ 3A0ce
Xr

nc¼1

A2
nc
cosðncO1tÞ2 þ B2

nc
sinðncO1tÞ2

þ e
Xr

nc¼1

A3
nc
cosðncO1tÞ3 þ B3

nc
sinðncO1tÞ3

þ 3e
Xr

nc¼1

A2
nc

cosðncO1tÞ
2Bnc

sinðncO1tÞ þ Anc
cosðncO1tÞB2

nc
sinðncO1tÞ2

 !

þ 6A0ce
Xr

nc¼1

Anc
cosðncO1tÞBnc

sinðncO1tÞ

þ ðo2
n þ eA2

0cÞA0c �
Xm

k¼1

ak cosðkO1tÞ � bk sinðkO1tÞ ¼ 0. ð45Þ

Expansion (45) shows products and higher power trigonometric terms—all of which require further
expansion and simplification into individual trigonometric components before harmonic balance can occur.
This simplification can be only achieved in practice for a relatively small number of terms in Eq. (44) i.e. 2 or 3
harmonics. When more terms are included, conventional algebraic manipulation rapidly becomes intractable
which is one reason why more sophisticated expansions of the cubic term have been developed [14,20].

Alternatively a ‘conventional’ HBM approach can still be greatly extended by using symbolic processing
tools to overcome the algebraic burden [15,16]. Here we describe an approach using the maple software to
generate the equations—the details are summarised as follows: First the assumed trigonometric series for f(t)
and y(t) in Eqs. (43) and (44), are created using the symbolic sum command. The first two symbolic derivatives
are obtained by repeated application of the diff function to y. Symbolic y3 is then constructed and the expand

command is applied directly to it to generate the nonlinear terms in Eq. (45). Then after the symbolic
representation of the system model Eq. (36) is constructed as a single function, the simplify command is
applied directly to it to create a rather untidy Fourier series with many repeated terms in cosðkO1tÞ and
sinðkO1tÞ—this is by far the most computationally demanding step. Finally, using a loop (in conjunction with
the collect command for kpm), the individual terms in the Fourier series are isolated into separate
components. The algebraic equations are created in symbolic form by extracting the coefficient functions
associated with each harmonic component. This is achieved by setting kO1t ¼ 1 and kO1t ¼ p=2 for all k

(which avoids explicit use of Galerkin’s method, thereby avoiding computationally demanding symbolic
integration). An appropriate objective function can be created from the vector of symbolic algebraic equations
for numerical computation using the matlab least square solver lsqnonlin (in a similar way as used in the SF-
HBM of Section 2 to solve Eq. (34)). The main difference here is that the Jacobian matrix can also be
generated directly in symbolic form and similarly converted for use in lsqnonlin. The Jacobian associated with
Eq. (45) is however a full matrix and therefore does not enjoy, on large scale problems, the sort of sparsity
structure often used to computational advantage in lsqnonlin (Jacobian construction can be an enormous task,
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as in Ref. [21], where, written as a matrix equation, it runs to 7 pages in length). This ‘conventional’ HBM has
been successfully used to generate and solve the algebraic equations associated with a large number of terms in
Eq. (44). A practical limit arises on the number of terms, from the time needed to generate the system of HBM
equations (particularly use of the Maple simplify command). On a PC (Pentium 4) for example, this limit
occurs around 24 harmonics (49 unknowns) as explained now in a comparison with the SF-HBM.
3.2. A comparison of the SF-HBM and conventional HBM applied to the Duffing model

A test of the capability of the SF-HBM is now made for an oscillator model equation (36) with stiffness
parameter values on ¼ 1:0 and e ¼ 0:75, and with a moderately light damping level z ¼ 0:05. Four cases of
zero-mean periodic excitation are considered starting with a single harmonic, and increasing to 24 harmonics
(namely with 24 nonzero cosine and 24 sine terms in Eq. (43)).

Fig. 1 shows six cycles for each of the four forcing functions corresponding to 1, 6, 12, and 24 harmonics
(the coefficients are given in Table 1 to an accuracy of four decimal places). The magnitude and frequency of
the single harmonic forcing has been chosen to ensure that the oscillator response is significantly nonlinear.
The harmonic coefficients for the 6, 12, and 24 cases were drawn randomly from a normal distribution N(0,1)
each with the same fundamental period as the single harmonic case. Fig. 2 shows a frequency response
function for the oscillator with single harmonic forcing. Two specific points on the curve, namely a stable and
one unstable solution at frequency ratio O=on ¼ 2, have been obtained using the conventional HBM up to its
practical limit of 24 response harmonics (i.e. obtained by solving 49 nonlinear algebraic equations). The
complete frequency response function was obtained over the entire frequency range using an Arc Length
Continuation scheme, similar to that used in Ref. [17]. Stability of these points was confirmed using the
nonlinear analysis method [17] adapted for use with the SF-HBM. The adaptation involves a two-stage
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Fig. 1. Periodic excitation test cases showing six cycles for single, 6, 12, and 24 harmonics using the coefficient data in Table 1.
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Table 1

Fourier coefficient magnitudes used in the test cases with multi-harmonic excitation

Forcing

frequency

ratio O=on

Number of excitation harmonics (zero mean)

1 6 12 24

Cosine ak Sine bk Cosine ak Sine bk Cosine ak Sine bk Cosine ak Sine bk

2 Magnitude of

Fourier

coefficients

¼ (shown to 4

decimal places)

1 0 0.1286 �1.3194 �0.5883 �0.6918 1.1908 0.0000

4 0.6565 0.9312 2.1832 0.8580 �1.2025 �0.3179

6 �1.1678 0.0112 �0.1364 1.2540 �0.0198 1.0950

8 �0.4606 �0.6451 0.1139 �1.5937 �0.1567 �1.8740

10 �0.2624 0.8057 1.0668 �1.4410 �1.6041 0.4282

12 �1.2132 0.2316 0.0593 0.5711 0.2573 0.8956

14 �0.0956 �0.3999 �1.0565 0.7310

16 �0.8323 0.6900 1.4151 0.5779

18 0.2944 0.8156 �0.8051 0.0403

20 �1.3362 0.7119 0.5287 0.6771

22 0.7143 1.2902 0.2193 0.5689

24 1.6236 0.6686 �0.9219 �0.2556

26 �2.1707 �0.3775

28 �0.0592 �0.2959

30 �1.0106 �1.4751

32 0.6145 �0.2340

34 0.5077 0.1184

36 1.6924 0.3148

38 0.5913 1.4435

40 �0.6436 �0.3510

42 0.3803 0.6232

44 �1.0091 0.7990

46 �0.0195 0.9409

48 �0.0482 �0.9921
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transformation of the wholly real Jacobian (used in the SF-HBM) to the complex form in Ref. [17]. This
transformation is singular if particular response harmonic amplitudes approach zero but the problem can be
avoided by removing (from the Jacobian) rows and columns (associated with near-zero amplitudes).

Focusing initially on the stable HBM solution, Fig. 3a shows the rms equation error obtained using the
conventional HBM as the number of harmonics in the solution is increased. To generate this information an
increasingly large system of nonlinear algebraic equations up to a practical maximum number of 24 must be
repeatedly generated and repeatedly solved. Fig. 3b shows the absolute magnitude of the harmonics obtained
for the 24 harmonic solution. Fig. 4a shows the equation error rms for the same stable solution obtained using
the SF-HBM over 26 discrete time points. This information does not correspond directly to that shown in
Fig. 3a since here, the equation error rms is shown as a function of the total number of iterations (described in
steps 1–6 in Section 2). The errors associated with each iteration are shown with a ‘�’ symbol, where four
iterations have been made following introduction of each additional low-frequency harmonic (the last
iteration prior to the introduction of a new low-frequency harmonic is shown overlaid with ‘J’ symbol) up to
a maximum of 6 low-frequency harmonics. All of the equation error rms values shown in Fig. 4a correspond
to the use of all 32 (low and high frequency) harmonics starting with the mean value plus a single cosine term
with unknown amplitude and phase. Fig. 4b shows the absolute magnitude of all 32 harmonics obtained with
the SF-HBM for the converged case of 6 low-frequency harmonics. This figure can be compared with Fig. 3b
up to 24 harmonics (the limitation of the conventional HBM). Fig. 4c shows the converged (stable) solution
obtained with the SF-HBM compared with the starting low-frequency harmonic, for which the mean is
assumed to be zero and the amplitude and phase are starting guesses.

Corresponding results for the unstable solution of the oscillator with the same single harmonic excitation at
frequency ratio O=on ¼ 2 (identified in Fig. 2), are shown in Figs. 5 and 6. Fig. 5a shows the equation error
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Fig. 3. Duffing oscillator stable solution information at O=on ¼ 2 computed via conventional HBM for single-harmonic forcing:

(a) equation error rms as more harmonics used to generate solution and (b) absolute magnitudes when 24 response harmonics used.
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amplitude at O=on ¼ 2 obtained via conventional HBM using 24 response harmonics.
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rms values, again as more terms are assumed in the solution obtained via the conventional HBM. Fig. 5b
shows the absolute magnitudes of the harmonics for the nominally converged case of 24 response harmonics.
Fig. 6a shows the SF-HBM rms equation errors as a function of iteration number, where again 26 discrete time
points have been used, and a maximum of 6 low-frequency harmonics. Fig. 6b shows the absolute magnitudes
of the total 32 harmonics for 6 low-frequency harmonics. And in Fig. 6c, the converged response prediction
with 6 low-frequency harmonics is compared with the starting low-frequency harmonic (again starting with a
mean zero). The main difference between the stable and unstable starting cosine function is that the guessed
phase for the unstable solution is delayed roughly by 901 compared with the stable solution.

Turning attention to the test results for an oscillator with the polyharmonic excitation involving 6, 12, and
24 harmonic periodic forcing shown in Fig. 1—the same model parameters are used as previously for single
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Fig. 4. Duffing oscillator stable solution information at O=on ¼ 2 computed via SF-HBM for single-harmonic forcing over 64 discrete

time points: (a) equation error rms as a function of iteration number (shown as a � symbol) with four iterations as each of the six low-

frequency harmonics is introduced (4th iteration shown overlaid with J symbol); (b) absolute magnitudes of the total 32 response

harmonics and (c) stable periodic solution compared with starting single harmonic.
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Fig. 5. Duffing oscillator unstable solution information at O=on ¼ 2 computed via conventional HBM for single-harmonic forcing:

(a) equation error rms as more harmonics used to generate solution and (b) absolute magnitudes when 24 response harmonics used.
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harmonic forcing. Fig. 7a shows for 6-harmonic forcing, the rms equation errors obtained with the
conventional HBM as more harmonics are used to generate a stable solution up to the practical maximum of
24 harmonics. Fig. 7b shows for the 24-harmonic solution, the absolute magnitudes of the Fourier
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time points: (a) equation error rms as a function of iteration number (shown as a � symbol) with four iterations as each of the six low-

frequency harmonics is introduced (4th iteration shown overlaid with J symbol); (b) absolute magnitudes of the total 32 response
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Fig. 7. Oscillator stable solution information at O=on ¼ 2 computed via conventional HBM for 6-harmonic forcing: (a) equation error

rms as more harmonics used to generate solution and (b) absolute magnitudes when 24 response harmonics used.
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Fig. 8. Oscillator stable solution information at O=on ¼ 2 computed via SF-HBM for 6-harmonic forcing over 64 discrete time points:

(a) equation error rms as a function of iteration number (shown as a � symbol) with four iterations as each of the six low-frequency

harmonics is introduced (4th iteration shown overlaid with J symbol); (b) absolute magnitudes of the total 32 response harmonics and (c)

stable periodic solution compared with starting single harmonic.
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Coefficients. Fig. 8b shows for the 6-harmonic forcing case the rms equation errors obtained with the SF-
HBM again using four iterations per additional low-frequency harmonic (with convergence at 6 low-frequency
harmonics) and again over 26 discrete time points. Fig. 8b shows the absolute magnitudes of the total 32
harmonics for the converged solution. Fig. 8c compares one cycle of the corresponding converged periodic
solution with the starting low-frequency harmonic, again starting with an assumed zero mean.

Fig. 9a gives the 12-harmonic forcing rms equation errors obtained using the conventional HBM as a
function of the number of harmonics used to generate the solution, and Fig. 9b gives the absolute magnitudes
of the 24-harmonic solution. Fig. 10a shows corresponding rms equation errors using the SF-HBM with four
iterations per additional low-frequency harmonic (up to a maximum of 6) over 28 discrete time points (the
increase over the 1 and 6-harmonic case being needed for convergence). Fig. 10b shows the absolute
magnitudes of the harmonic for the converged solution showing the total of 128 low and high frequency
components. Fig. 10c shows a comparison of the converged solution with the starting low-frequency
harmonic, again assuming zero mean.

For the 24-harmonic forcing case, Fig. 11a shows the rms equation errors as more harmonics are used to
generate the solution in the conventional HBM. Fig. 11b shows the absolute magnitudes of the Fourier
coefficients for the practical limitation of 24 response harmonics. Fig. 12a gives the corresponding equation
errors using the SF-HBM, again with four iterations per additional low-frequency harmonic (up to a
maximum of eight) over 28 discrete time points—the increase from 6 to 8 low-frequency harmonics being



ARTICLE IN PRESS

0 5 10 15 20 25
10-5

10-4

10-3

10-2

10-1

100

101

Number of solution harmonics

R
M

S
 E

q
u

at
io

n
 E

rr
o

r

(a)

0 5 10 15 20 25
10-10

10-8

10-6

10-4

10-2

100

102

Harmonic

A
b

so
lu

te
 M

ag
n

it
u

d
e

(b)

Fig. 9. Oscillator stable solution information at O=on ¼ 2 computed via conventional HBM for 12-harmonic forcing: (a) equation error

rms as more harmonics used to generate solution and (b) absolute magnitudes when 24 response harmonics used.
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Fig. 10. Oscillator stable solution information at O=on ¼ 2 computed via SF-HBM for 12-harmonic forcing over 256 discrete time points:

(a) equation error rms as a function of iteration number (shown as a � symbol) with four iterations as each of the 6 low-frequency

harmonics is introduced (4th iteration shown overlaid with J symbol); (b) absolute magnitudes of the total 128 response harmonics and

(c) stable periodic solution compared with starting single harmonic.
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Fig. 11. Oscillator stable solution information at O=on ¼ 2 computed via conventional HBM for 24-harmonic forcing: (a) equation error

rms as more harmonics used to generate solution and (b) absolute magnitudes when 24 response harmonics used.
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Fig. 12. Oscillator stable solution information at O=on ¼ 2 computed via SF-HBM for 24-harmonic forcing over 256 discrete time points:

(a) equation error rms as a function of iteration number (shown as a � symbol) with four iterations as each of the 8 low-frequency

harmonics is introduced (4th iteration shown overlaid with J symbol); (b) absolute magnitudes of the total 128 response harmonics and

(c) stable periodic solution compared with starting single harmonic.
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needed for convergence. Fig. 12b shows the absolute Fourier coefficient magnitudes for the SF-HBM
converged solution, and Fig. 12c compares one cycle of this solution with the guessed zero-mean starting low-
frequency harmonic.

With regard to the computational efficiency of the SF-HBM, it is of interest to assess the relative
computational efficiency of the method compared with the time needed for the conventional HBM to obtain a
converged solution. In general using the conventional HBM, there are two main tasks that contribute to the
computational burden: (i) the computing time needed to generate the system of HBM nonlinear algebraic
equations (here via symbolic computation), and (ii) the time taken to obtain a converged numerical solution
from the generated system of algebraic equations. Since the SF-HBM is implemented numerically, making
full use of the FFT, each algebraic equation is generated numerically only when it is needed (in the form of
Eq. (34)). Most of the computational burden therefore is taken-up in task (ii) and is not separate from the
relatively insignificant contribution needed for equation generation. By contrast, Fig. 13 shows equation
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generation times for the conventional method on a Pentium 4 using the maple symbolic software. Regarding
the solution time needed to solve for the unknown harmonic coefficients task (ii) can be completely separated
from (i). Fig. 14 shows for the conventional HBM, normalised CPU times needed to generate the solution for
the 1-, 6- and 12-harmonic forcing, shown as a function of the number of harmonics used in the solution.
Normalisation is based on the CPU time taken to obtain a converged 24-harmonic solution for the oscillator
with single harmonic forcing. Also shown on Fig. 14, are the SF-HBM normalised CPU times needed to
obtain converged solutions for the 6- and 24-harmonic forcing, noting that these SF-HBM CPU times are the
total times needed for both tasks (i) and tasks (ii).

Finally, for the Duffing model, it should be mentioned for the conventional HBM, the least-square solver
was compared using both a user-supplied closed-form Jacobian (generated symbolically), and an internally
generated Jacobian based on finite differences (the SF-HBM always uses a numerically generated Jacobian). It
was found that the accuracy of the conventional HBM was virtually identical whichever Jacobian was used.
Also, there were only marginal improvements in efficiency using the closed form Jacobian where the speed
advantage remained less than a factor 2.
3.2.1. Discussion of results for the Duffing model

First regarding the overall effect of introducing multi-harmonic forcing on the performance of the
conventional HBM for response prediction at the fundamental driving frequency, Figs. 3a (for stable
1-harmonic forcing), Fig. 7a (for 6-harmonic forcing), Fig. 9a (for 12-harmonic forcing), and Fig. 11a (for
24-harmonic forcing) clearly show that as more forcing harmonics are introduced, correspondingly more
harmonics are needed in the response to achieve a specified level of accuracy in the solution. The respective
number of harmonics needed to achieve an equation error rms level of 2�6 starts at 24 coefficients for
1-harmonic forcing (i.e. 12 cosine+12 sine coefficients), 31 coefficients for 6-harmonic forcing (i.e. the mean
value+15 cosine+15 sine coefficients), and 49+ coefficients for 12-harmonic forcing (i.e. the mean value+24
cosine+24 sine coefficients). For 24-harmonic forcing it is clear in Fig. 11a, that the limitation of the
conventional HBM is fully realised where the benchmark rms error level of 2�6 is far from reached. This is
caused by not being able to construct a system greater than 49 algebraic equation. It is clear from Fig. 12b
using the SF-HBM, that for 24-harmonic forcing around 140 algebraic equations would be needed
(70 harmonics) to get complete convergence using a conventional HBM. Regarding the accuracy and
convergence of the SF-HBM, Fig. 4a, Fig. 8a, and Fig. 10a clearly show that it is possible to obtain a highly
accurate periodic response using as few as 6 low-frequency harmonics. Only a crude guess is needed for the
starting low-frequency harmonic followed by only four iteration for each new additional low-frequency
harmonic. Even when 24-harmonic forcing is introduced, the same level of accuracy is achieved with just eight
low-frequency harmonics. The full bandwidth of the response however depends only on the number of discrete
time points which, as Figs. 10b and 12b show, allow a very high bandwidth to be obtained. One point of
interest to note regards the zero harmonic coefficient (response mean) value obtained (with both methods) as
shown in Figs. 3b, 7b, and 9b (for the conventional HBM), and 4b, 8b, and 10b (for the SF-HBM). For single-
harmonic forcing this is zero. But for multi-harmonic forcing the mean periodic response is not zero. This
represents an initially unexpected loss of symmetry that can be explained by considering the equation error
with just two-harmonic forcing terms assuming a response with zero mean. It is easy to show that the mean of
the equation error cannot then be set to zero regardless of how many solution harmonics are used. A nonzero
mean is needed to do this. This was not wholly expected and indeed the implications are quite profound.

As to the equation generation time and computational efficiency Fig. 13 shows that beyond 20 harmonics,
equation generation using the conventional HBM becomes impractical in terms of time taken. Fig. 14 clearly
shows that the SF-HBM allows an increase in bandwidth with only marginal growth in computational cost—
this is in stark contrast to the conventional HBM cost which grows rapidly with the number of forcing
harmonics and the number of response harmonics. Fig. 14 shows that even when the size of the system of
algebraic equations remains fixed, the larger the number of forcing harmonics (and therefore more
inhomogeneous algebraic equations) the greater the computational cost. This dependence is not significant for
the SF-HBM and therefore opens-up new possibilities for generation of a ultra high-bandwidth nonlinear
oscillator responses to a large number of forcing harmonics.
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3.3. Period-1 response computation for an oscillator with non-expansible stiffness

The use of FFT generated algebraic equations allows a wide class of non-expansible nonlinearities to be
handled. Even a 5th power nonlinearity for example is non-expansible in practice since it is quite intractable to
construct algebraic relations between the coefficients of a Fourier series, and the coefficients in the related
Fourier series (obtained by raising the original series to power 5). A test is now undertaken for an oscillator
with a 7th power nonlinearity as follows:

€yþ 2zon _yþ o2
nyþ ey7 ¼ f ðtÞ. (46)

The SF-HBM has been used to compute period-1 responses for both single and multi-harmonic forcing for
the model (46) with the magnitudes of stiffness parameter values on ¼ 1:0, and e ¼ 0:2, and with damping
factor z ¼ 0:04. Three cases of periodic excitation are considered namely single-, 12-, and 24-harmonic forcing
corresponding to the coefficients in Table 1. Fig. 15 shows the entire frequency response function computed
using the SF-HBM for single-harmonic forcing.

Fig. 16a shows the equation error rms for the solution with 12-harmonic obtained using SF-HBM over 28

discrete time points. Again the equation error rms is shown as a function of the total number of iterations
shown with a ‘�’ symbol, where four iterations have been made for each additional low-frequency harmonic
(the last iteration prior to the introduction of each new low-frequency harmonic is again shown overlaid with
‘J’ symbol) up to a maximum of 10 low-frequency harmonics. All of the equation error rms values shown in
Fig. 16a correspond to the use of all 128 (low and high frequency) harmonics starting with the mean value plus
a single cosine term with unknown amplitude and phase. Fig. 16b shows the absolute magnitude of all 128
harmonics obtained with the SF-HBM for the converged case of 10 low-frequency harmonics. Fig. 16c shows
the converged solution computed with the SF-HBM compared with the starting low-frequency harmonic, for
which the mean is assumed to be zero and the amplitude and phase are starting guesses. Corresponding results
for the computed period-1 solution with 24-harmonic forcing are shown in Fig. 17a (rms errors), Fig. 17b
(absolute magnitudes), and Fig. 17c (solution compared with starting harmonic). Figs. 16a and 17a clearly
demonstrate that the SF-HBM is very capable of computing an accurate period-1 responses for an oscillator
with non-expansible nonlinearity.
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Fig. 15. Frequency response function computed via the SF-HBM for the oscillator with 7th degree stiffness and single-harmonic forcing.
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Fig. 16. Solution information at O=on ¼ 2 for oscillator with 7th degree stiffness computed via SF-HBM for 12-harmonic forcing over

256 discrete time points: (a) equation error rms as a function of iteration number (shown as a � symbol) with four iterations as each of the

10 low-frequency harmonics is introduced (4th iteration shown overlaid with J symbol); (b) absolute magnitudes of the total 128 response

harmonics and (c) stable periodic solution compared with starting single harmonic.
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3.3.1. The benefits of the SF-HBM

There are three marked advantages with the SF-HBM. The first major advantage of the method is that the
total number of harmonics included in the solution is determined by the chosen discrete time interval. This
remains fixed, and can be very large from the start, as needed to obtain a fully converged solution. By contrast,
only a small number of algebraic equations need to be solved to obtain the total solution. In practice, this
starts from three equations, rising typically to no more than about 13 equations as the iteration proceeds. But
the total solution may if needed, involve 10’s or even 100’s of harmonics from the start. This ability to carry a
sufficient number of harmonics in the total solution (without the computational burden of having to solve a
large system of algebraic equations) overcomes one of the limitations often quoted of the HBM. This first
advantage is evident for multi-harmonic forcing, where a large number of solution harmonics are needed. It
has been demonstrated that the method only needs to solve algebraic equations for the low-frequency
harmonics (typically between 4 and 8 equations for the Duffing oscillator test cases). This gives an enormous
improvement in efficiency over the conventional HBM where the size of the algebraic system is directly
proportional to the number of response harmonics. When more harmonics are needed in the total solution,
this can be achieved with the SF-HBM, by increasing the number of discrete time points. It does not
necessarily require the number of low-frequency harmonics to be increased. For example in the 12-harmonic
forcing test case, only the mean, and 6 low-frequency harmonics were needed, whereas use of 28 ¼ 256 discrete
time points, gave a total of 128 response harmonics.
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Fig. 17. Solution information at O=on ¼ 2 for oscillator with 7th degree stiffness computed via SF-HBM for 24-harmonic forcing over

256 discrete time points: (a) equation error rms as a function of iteration number (shown as a � symbol) with four iterations as each of the

10 low-frequency harmonics is introduced (4th iteration shown overlaid with J symbol); (b) absolute magnitudes of the total 128 response

harmonics and (c) stable periodic solution compared with starting single harmonic.
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The second advantage relates to the feasibility of algebraic equation generation and the amount of time
involved in practice. Since the SF-HBM is implemented numerically, each of the small number of algebraic
equations is generated only when needed using the FFT. This considerably simplifies the construction of the
algebraic equations even for expansible nonlinearities (such as quadratic and cubic terms [14,20]) whose
manipulation actually makes error elimination difficult. Alternatively, to totally avoid errors arising when
handling expansible nonlinearities, symbolic computation can be used in a conventional HBM. But as Fig. 13
shows, the symbolic computation time needed for a cubic nonlinearity is highly dependent on the size of the
algebraic system. This burden clearly poses a serious practical limitation on the use of symbolic computation
for equation generation with expansible nonlinearities. For non-expansible nonlinearities, it is practically
impossible to construct the algebraic equations in closed-form. This means that algebraic equation generation
then has to be achieved wholly numerically (i.e. the HBM essentially becomes a Galerkin-type Weighted
Residual method). The SF-HBM handles this numerical generation very efficiently via the FFT and therefore,
as demonstrated in the paper, has the advantage that non-expansible nonlinearities can be handled efficiently.

A third advantage is that convergence of a solution is confirmed directly in terms of the magnitude of the
equation error rather than by the magnitude of the terms neglected. If a method has the ability to converge,
then the equation error should approach zero. A very small equation error is clearly not needed in most
practical problems but it does indeed confirm that a scheme converges to an accurate solution.

A disadvantage of the proposed SF-HBM is the dependence of successful convergence on a reasonably good
initial choice for the starting amplitude and phase of the fundamental harmonic component. The starting
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phase in particular, should be in the vicinity of the phase of the fundamental component of the final solution.
If the starting choice is poor, then the iterative scheme may fail to converge. When convergence does not
occur, it may be difficult to establish whether the problem is one of poor starting values or a non-existent
solution. But this problem also occurs with the HBM in general.

4. Conclusions

Nonlinear oscillator responses to multi-harmonic forcing can be obtained using the HBM but as the paper
shows, this generally requires correspondingly more response harmonics in the solution than for single-
harmonic forcing. This even includes the addition of a small but nonzero mean value response, which unlike
single-harmonic forcing, results in a small loss of symmetry. A new SF-HBM has been developed and tested
on nonlinear oscillators with multi-harmonic forcing, and shown to give greatly improved accuracy and
efficiency compared with a conventional HBM. Test results are obtained for the periodic response at the
fundamental driving frequency, resulting from multi-harmonic forcing in the range 1–24-harmonics. To
totally avoid errors from entering the algebraic equation generation in a conventional HBM applied to a
Duffing model, symbolic computation has been used throughout. The paper shows that a practical limit is
imposed by the amount of symbolic computation time needed, even for manipulating expansible
nonlinearities, such as a cubic term. The main findings of the paper are that this new SF-HBM offers the
following marked benefits:

By splitting the response into nominally low-frequency and nominally high-frequency components, and by
writing the equation error in terms of two well-defined functions, a high bandwidth solution (involving 2N�1

harmonics) can be obtained by iteration. This involves solving a much smaller system of algebraic equations
(for the low-frequency harmonic coefficients) and by obtaining the high frequency coefficients in a separate
step.

The small system of algebraic equations associated with the low-frequency harmonics can be very efficiently
constructed via the FFT (over 2N discrete-time intervals per cycle), and solved to very high accuracy using a
conventional least square solver. This capability allows oscillators with non-expansible nonlinearities and
multi-harmonic forcing to be handled efficiently.
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